Я часто сталкиваюсь со мнением, что у одних людей есть «математический склад ума», а у других — нет. Первым дана математика, а вторым нет. Многие даже считают, что это не приобретаемое, а генетическое/природное/божественное свойство человека, примерно, как владение магией в Гарри Поттере , что совершенно бесполезно пытаться научить необучаемого , и предлагают разделить школы на разные уровни , профили , а то и вовсе не учить некоторых .
(рекомендую всё-таки прочитать статьи по ссылкам, в них изложена моя точка зрения по каждому вопросу)
И вот сейчас я расскажу, как работает эта «магия», и поясню, почему овладеть ей может каждый.
Когда-то давно я писал статью о том, что математика/физика/химия и прочие подобные науки (для краткости я буду писать дальше слово «математика», имея в виду не только её) сложны огромным количеством вариантов, коих больше, чем шахматных партий. Работа над любой математической задачей состоит из огромного количества мелких, атомарных действий. Например, вычитание 105-7. Я запишу полный процесс выполнения этой задачи, не пугайтесь, пожалуйста:
- разбить 105 на слагаемые: 100 и 5
- разбить на слагаемые 7:
1+6; 2+5; 3+4; 4+3; 5+2; 6+1 - выбрать сумму с совпадениями
1+6; 2+5 ; 3+4; 4+3; 5+2 ; 6+1 - определить, что это одна и та же пара
- уничтожить 5 в уменьшаемом и в вычитаемом
- разложить 100 на слагаемые:
1+99; 2+98; 3+97 <. >97+3; 98+2; 99+1 - Выбрать сумму с совпадениями:
1+99; 2+98 ; 3+97 <. >97+3; 98+2 ; 99+1 - определить, что это одна и та же пара
- уничтожить 2 в уменьшаемом и в вычитаемом
- озвучить/записать ответ 98
Это подробная запись одного из путей, которым мог бы выполнить вычитание взрослый человек. Кроме того, пункты 2. и 6. сами по себе являются сложными — их можно разбивать и дальше.
Очень много, не находите? Очень сложно, согласны? Нудно, не так ли?
Но именно так и работает мозг. Однако мы этого процесса не замечаем. Мозг все эти действия выполняет без нашего участия, на автомате, возвращая нам только готовый ответ, разгружая наше сознание для более редких задач. Происходит всё так быстро, что со стороны кажется, будто ничего нет вовсе. Есть только задача и ответ.
А как мы называем процесс получения верного ответа из исходных данных без каких-либо действий?
Да-да, мы говорим, что человек «интуитивно понимает» геометрию, когда его мозг способен » разложить » чертёж на отдельные компоненты (точки, отрезки, прямые, треугольники. ), перебрать все связи между ними (равенство отрезков, углов, подобие фигур. ), выделить из них нужные, перебрать в голове все теоремы, определения и аксиомы, рекурсивно построить цепочку из теорем, приводящую нас от условия задачи к ответу. И всё это подсознательно, на автомате.
«Поднять» этот процесс на сознательный уровень, чтобы посмотреть на него «со стороны», очень тяжело, но возможно, если задаться такой целью.
А ещё — » математический склад ума «.
Но откуда этот процесс берётся? Неужели кто-то рождается с умением Видеть?
Одна моя знакомая как-то поразила своего учителя живописи, работая с объёмами на картинах. На вопрос где она так научилась, и нет ли вокруг неё художников, она ответила, что муж иногда развлекается рисуя в 3D. «Аааа, так у Вас муж — тридешник!» воскликнул учитель, как будто это всё объясняло.
Так вот, половым путём такие вещи, разумеется, не передаются. Это только опыт. Только набирая сначала сознательный, а потом и бессознательный опыт, загружая мозг рутиной, мы можем ожидать, что самые долгие и нудные работы перейдут в подсознание и будут выполняться так, как будто их нет.
И вот этот опыт набрать может каждый. И обязательно набирает. Просто одни «раскладывают» физические процессы на атомы, а кто-то делает то же самое с виртуальным миром компьютерной игры.
Источник: dzen.ru
Что такое математический и гуманитарный склад ума
От того каким вы обладаете складом ума, в прямом смысле зависит ваша будущая профессия и карьерный рост. Очень важно понимать разницу между математическим и гуманитарным типом мышления, чтобы в дальнейшем не ошибиться с выбором своей специальности.
Статьи по теме:
- Что такое математический и гуманитарный склад ума
- Гуманитарии и технари – в чем разница мышления
- Гуманитарии и математики
Типы мышления и склад человеческого ума
Из основ психологии известно, что за мыслительную функцию отвечают полушария мозга. Люди с доминирующим правым полушарием более эмоциональные, они отличаются образным, абстрактным мышлением. У таких личностей гуманитарный склад ума. Если же доминирует левое полушарие, человек является более практичным, обладает аналитическим мышлением и математическим складом ума.
Различают 5 основных категорий человеческого мышления:
— практический склад ума;
— художественно-образный;
— гуманитарный;
— математический (аналитический);
— универсальный склад ума (синтетический).
Каким типом мышления вы обладаете?
Для того чтобы понять свой тип мышления, в первую очередь вам необходимо ознакомится более подробнее с каждым из них.
Практический склад ума. Люди, которые им обладают, в повседневной жизни отдают предпочтение предметному мышлению. Они последовательны во всем и обладают неразрывной связью между предметом-пространством-временем. Человек с таким складом ума по своей сути реалист, не склонный фантазировать и мечтать.
Художественно-образный склад ума. При таком мышлении вся информация обрабатывается при помощи образов. Такие люди имеют развитое воображение и превосходный запас слов. Им проще рассказать, чем показать действием. Человека с художественно-образным складом ума очень легко распознать, так как он резко реагирует на критику и эмоционален практически во всех проявлениях.
Аналитические способности у такой личности выражены значительно меньше.
Человеку, обладающему художественно-образным складом ума, прекрасно подойдут профессии психолога, социального работника, а также творческие профессии.
Гуманитарный склад ума, который можно охарактеризовать как знаковое мышление. Личность подобного склада обрабатывает информацию при помощи умозаключения. Такой человек не выстраивает логическую цепочку по «мелким деталям», а привязывает ее к конкретной воображаемой цели. В этом ему помогает развитая интуиция и творческое начало, которое основано на воображении и чувствах. Эмоциональный метод познания – это первое, на что опирается человек-гуманитарий.
Математический (аналитический) склад ума. В этой ситуации все наоборот. Люди с таким складом ума отдают предпочтение законам, правилам и формулам. В отличие от гуманитариев, эти личности способны адекватнее оценивать ситуацию и решать серьезные вопросы. Холодные расчеты помогают преуспеть в коммерческой сфере деятельности.
Аналитический склад ума основывается на логике рассуждения и является полной противоположностью интуитивного мышления. Факты, объективные сведения и цифры — это то, чем предпочитают руководствоваться такие люди.
Математическое (аналитическое) мышление имеет большое сходство с практическим складом ума.
Универсальное (синтетическое) мышление. Людей, обладающих таким складом ума, можно назвать счастливчиками, ведь они обладают всеми способностями. У них прекрасно развиты и левое, и правое полушарие. Они достаточно ясно представляют картину мира и хорошо разбираются в технических дисциплинах. Они эмоциональные реалисты.
Однако эти способности разделены не поровну, а с некоторым перевесом. И чтобы выявить преобладающий тип мышления, необходимо пройти специальный психологический тест.
Исходя из вышесказанного, знания о типах мышления и складе ума имеют огромное влияние на ваше дальнейшее успешное будущее. Развивайтесь в правильном направлении! Успехов вам!
Совет полезен?
Статьи по теме:
- Что такое гуманитарный склад ума
- Главные свойства ума по И.П. Павлову
- В чем суть рационального мышления
Добавить комментарий к статье
Похожие советы
- Как определить склад ума
- Как определить склад мышления
- Как определить свой тип мышления
- Как определить тип мышления
- Что считается высшей формой мышления
- Что такое мышление и какие бывают формы мышления
- Что такое рациональное мышление
- Как мыслить рационально
- Как определить ведущее полушарие
- Что мы знаем о возможностях мозга
- Что такое мышление
- Кем может работать человек с гуманитарным складом ума
- Как узнать, какое полушарие мозга у вас наиболее развито
- Загадки науки: можно ли взвесить мысли
- 9 мифов о человеческом мозге
- Как развить аналитический склад ума
- Зачем изучать гуманитарные дисциплины
- Чем отличаются полушария мозга
- Как понять, что вы слишком умны для своей работы
- Что такое способности
- Как развить аналитический ум
- Как научиться дедуктивному методу
- Как развивать аналитическое мышление
Новые советы от КакПросто
Рекомендованная статья
Какими будут направления итогового сочинения в 2017-2018 учебном году
В декабре одиннадцатиклассникам предстоит написать уже ставшее традиционным итоговое сочинение. И только те, кто успешно.
Источник: www.kakprosto.ru
Что такое «математический склад ума» и почему наглядность в математике может быть вредной
— Есть большая разница между тем, чем занимаются математики, и тем, чем занимаются исследователи математического образования. Иногда математики думают, что они занимаются исследованиями, потому что они преподают математику, но часто они просто не знают о том, что математическое образование — это вот уже более 50 лет как совершенно отдельная область исследований. Всего 50 лет, хотя самой математике тысячи лет.
Большая часть моих работ основываются на работах советского психолога Крутецкого. Он проделал большую работу, которая, на мой взгляд, до сих пор не получила достаточного внимания. Сейчас я занимаюсь тем, чтобы показать, насколько его научные работы опередили свое время.
— Да, образование как область научных исследований часто упускают из виду.
— Вообще-то я сама считаю себя преподавателем математики, я 12 лет преподавала математику в старшей школе. И хотя у меня есть диплом математика, ученую степень я получала в Кембридже именно в области исследований математического образования. И исследование тех лет стало одной из самых потрясающих вещей, которые мне довелось сделать в жизни.
Это исследование началось прямо в классе: когда я преподавала математику в школе в ЮАР, я обратила внимание на нескольких учеников в моем классе. Они мечтали быть архитекторами, инженерами, для карьеры в этих областях им нужна была математика, но была одна проблема. Во время летних каникул они сдавали профориентационные тесты, и так получилось, что я была в комиссии проверяющих. И вот что я обнаружила: эти дети были невероятно одаренными в области пространственного мышления, всего 4% от всех сдававших экзамен могли показать такой уровень. Однако они полностью провалили математику, хотя многие разделы математики связаны с пространственным мышлением — и это не только геометрия, но и тригонометрия и даже алгебра (в работе с равенствами и формулами есть и визуальный компонент).
До этого я исследовала особенности креативного мышления Эйнштейна. Он любил думать картинками и вообще был отличным визуализатором. Я увидела связь: значит, все-таки возможно использовать визуальные образы для понимания математического материала. Но в ЮАР на тот момент не было никого, кто бы мог направить меня в моих исследованиях.
Поэтому я отправилась в Кембридж, где нашла поддержку: коллеги считали, что вопрос, который меня беспокоил, нуждается в исследовании. Три года я пыталась понять, почему школьники, обладающие пространственным мышлением, не могут справиться с математикой.
— Удалось найти ответ?
— Да, и он был довольно неожиданным. Пришлось исследовать не только учеников, но и их учителей. На основе работ Крутецкого, который тоже изучал визуализацию как способ математического мышления у математически одаренных ребят, я разработала тесты — для учеников и учителей, и после того, как эти тесты были проверены на валидность, мы провели полевые исследования в выпускных классах школ. А затем я провела целый год, наблюдая за работой в классе, интервьюируя учителей и учеников.
Среди учащихся явно выделялись 54% «визуализаторов», тех кто предпочитает картинки, — но, выбирая стратегии для работы с классом, учителя редко ориентировались на них. Однако нашлось пять учителей, которые очень активно использовали визуализации в своей работе, — но корреляции между тем, насколько активно учитель использует визуальный материал в работе, и тем, какие результаты показывают его ученики-«визуализаторы», не обнаружилось.
Конечно, на уроках без визуализаций дети просто запоминают материал без глубокого понимания. Но и с визуальным подкреплением дела шли не лучше. Оказалось, что
дело не в визуализации, а в абстрактном мышлении, умении делать обобщения на основе этих визуализаций. Можно дать ученикам очень четкую картинку, прототип — и он просто не оставит места для анализа, додумывания.
— И как преподавать математику тем, кому она не дается?
— Среди всех участников исследования самым эффективным учителем оказался тот, кто использовал много визуализаций, но всегда вместе с заданиями на абстрактное обобщение этого визуального материала, додумывание. То есть — да, используйте цвет, линии и т. д., но если уж говорите о треугольнике, то задавайте вопросы и заставляйте думать. Важно не только представлять математику наглядно, но и иметь в виду трудности, которые сопровождают визуальное мышление.
Есть такое понятие — паттерны. Развивайте паттерное мышление. Скажем, если шахматиста-новичка попросить описать шахматную доску, он в деталях расскажет о шахматных фигурах. Опытные шахматисты видят вертикали, горизонтали, диагонали — паттерны, по которым перемещаются фигуры.
Именно паттерны, визуальные обобщения помогают в математике, в то время как конкретные изображения могут быть помехой на пути к пониманию математических понятий.
— И : существует такое явление, как талант к математике? Или математика подвластна всем?
— Вернусь к работам Крутецкого. Он работал в школах в конце 1930-х — тогда не было школьных тестов, не было данных. Если ученик не мог освоить математику, это однозначно была вина учителя. Так вот, Крутецкий и его коллега-исследователь Наталья Менчинская задались вопросом: как возможно, что дети одних родителей, которые учатся в одной школе у одного учителя, учатся по-разному?
В своих исследованиях Крутецкий выдвинул гипотезу, что есть такая вещь, как математический склад ума. И если он присутствует, то он помогает ребенку видеть математику во всем. В те времена такая гипотеза — разделение детей на неспособных, способных и одаренных — не была популярной. Но результаты исследований показывали, что одни дети рассматривали каждую задачу как совершенно новую, а другие легко видели общее, находили параллели с тем, что они когда-то раньше решали, выделяли принципы решений.
Математический склад ума — это некоторый способ думать, который одним дается проще, а другим сложнее. Если ребенку сложно с математикой — возможно, стоит поискать другие области, где ему легче. Тем не менее внимательный учитель должен помочь каждому увидеть общее в разных задачах и научить не страдать над ними, а получать удовольствие от решения.
Математические культуры
— Вы ведь еще занимаетесь этноматематикой. Что это такое?
— Как я говорила, я работала в ЮАР. В Дурбанском университете около трети студентов были европейцами, треть — местное население, и треть — эмигранты из Индии. Это было еще в 1980-х, ситуация была напряженной, и было особенно важно учитывать разные культурологические нюансы. В университете я занималась обучением учителей и тогда поняла, насколько важно исследовать культуру, особенно в связи с обучением математике.
Многие считают математику предметом, независимым от культурных кодов, но это только так кажется.
Меня заинтересовали математические идеи, созданные в национальных культурах, и люди, которые этими идеями пользуются на практике.
Например, у австралийских аборигенов есть довольно сложная монархическая система. Она накладывает множество ограничений на браки с людьми за пределами сообщества, но также, естественно, и на браки с близкими родственниками.
Чтобы определить, кому на ком можно жениться, у них придумана система, в которой участвуют диэдральные группы четвертого порядка — это довольно сложное математическое построение. Естественно, сами аборигены ничего такого не высчитывают, они просто проживают свою культуру. И вот именно такими вещами занимается этноматематика — cмотрит на культуры через математические очки. Даже здесь, в США, некоторые из моих студентов увлекаются шитьем традиционных пледов из лоскутов, а ведь узоры, которые передаются из поколения в поколение, — это тоже этноматематика.
— Изучает ли этноматематика влияние определенной культуры на математические способности?
— Я бы не сказала, что принадлежность к культуре дает детям определенные преимущества в математике. А вот что точно помогает, так это когда язык, на котором говорят с детьми дома, совпадает с тем, на котором говорят в классе. Когда эти языки различаются, дети действительно испытывают трудности в классе.
И, конечно, сам язык оказывает влияние.
Есть языки, которые вообще лучше приспособлены к математике
— например, японский, где «11» передается через слова «десять» и «один». В английском это будет отдельное слово «eleven» — что?! А во французском вообще считают двадцатками! Чтобы cказать «81», вам придется произнести «четырежды двадцать и один» — вы только представьте себе, как дети этому учатся.
— А насколько математические способности зависят от общего культурного уровня?
— Австралийский ученый Ллойд До исследовал влияние языковых барьеров на обучение: если ребенок мог преодолеть языковой барьер, он мог продвинуться в математике, но для тех, кто не смог овладеть языком свободно, сам язык оказывался препятствием. Была и гипотеза Сепира — Уорфа, которая говорила, что язык определяет способ мышления, но в дальнейшем многочисленные исследования опровергли некоторые ее утверждения.
Математика дается людям всех культур. Но есть разница между двумя типами «окультуривания» — культура, которую ты принимаешь от родителей, и культура, отличная от твоей родной, которую ты изучаешь. Если ребенок способен воспринимать новую для себя культуру, у него все получится.
Не можете решить задачу — поговорите об этом
— Вы выступаете на конференции, которая называется «Психология и технологии в математическом образовании». Несколько лет назад у многих было ощущение, что индивидуальные траектории в обучении — это вопрос нескольких лет, что совсем скоро современные онлайн-сервисы смогут научить, скажем, математике тех, кого не могли научить раньше. Кажется, эта задача намного сложнее, и сложности находятся скорее на стороне науки: мы до сих пор не очень хорошо понимаем, как разные люди учатся.
— Важно осознать, насколько важную роль в обучении играет хороший учитель. Я думаю, что хорошего учителя никакая машина никогда не заменит. Мои исследования ясно показывают: чтобы добиваться результата, преподаватели подстраиваются под разных учеников. И чаще всего это происходит на интуитивном уровне.
Важнее всего понять, почему учащийся дает тот или иной ответ на задачу, — ответ может быть неправильным, но только преподаватель может определить причину неверного ответа. Есть трудноуловимые связи между людьми, вряд ли в ближайшие 20 лет компьютеры смогут их воспроизвести.
— Часто говорят, что учитель больше не источник знания, а человек, который создает образовательное пространство. Но из того, что вы говорите, следует, что роль учителя больше похожа на роль врача, который способен точно диагностировать причины ошибок, которые совершает ученик.
— Мне нравится ваша метафора. Учитель и диагностирует, и выдает лекарство. И неважно, насколько замысловатыми будут компьютерные решения, — компьютер никогда не сможет обеспечить такой уровень согласованности между людьми, не сможет точно диагностировать причину неудачи ученика в конкретном примере. Но это проблема, потому что одно дело — гипотетический учитель, который работает с учащимся один на один, и совсем другое — класс, в котором разные ученики думают и воспринимают информацию по-разному.
Мои исследования — тесты на предпочтительный вид мышления — показывают нормальное гауссовское распределение. Большая часть людей находится в центральной части «холма»: иногда им нужно больше визуального подкрепления, иногда оно не требуется. Это зависит от трех факторов — от самого задания, от инструкций к заданию, которые могут требовать выполнять задание только определенным образом, и от индивидуальных особенностей человека. Но вот по краям распределения как раз хорошо видны различия: с одной стороны находятся люди, которым всегда нужны картинки (они сами их нарисуют, если не получат от преподавателя), а с другой — те, кому картинки не нужны, они на них вообще внимания не обращают. Так вот представьте: у вас в классе такое вот распределение, а вы пытаетесь (вынуждены) всех учить одним способом.
Я верю, что помочь в этой ситуации могут несколько практик — обсуждения заданий в небольших группах и возможность ученика рассказать о своем решении всему классу, чтобы другие могли узнать о другом способе мышления. Важно оставлять в классе место для коммуникаций, развивать умение выражать словами математические идеи.
Источник: theoryandpractice.ru