Просматривая учебные материалы для теста американских школьников вдруг обнаружил, что я не всё знаю, может забыл, а может нам так не давали:
Integers, Odd and Even Numbers, Prime Numbers, Digits
Integers: . . . , –4, –3, –2, –1, 0, 1, 2, 3, 4, . . .
(Note: zero is neither positive nor negative.)
Про целые числа, что есть негативные, позитивные и ноль – вопросов нет.
Consecutive Integers: Integers that follow in sequence; for example, 22, 23, 24, 25. Consecutive integers can be more generally represented by n, n +1, n + 2, n + 3, . . .
Consecutive Integers повидимому переводится как “последовательные целые”. Тут все нормально, хотя не помню, чтобы мы учили это сочетание слов именно как термин, ведь по смыслу образующих его слов и так ясно, о чем речь. Термины в той или иной науке обычно даются, когда требуется смысл сделать специфическим, ограничить вольное, “бытовое” толкование слов.
Odd Integers: . . . , –7, –5, –3, –1, 1, 3, 5, 7, . . . , 2k + 1, . . . , where k is an integer
Почему 0 в степени 0 равно 1?
Почему-то ни как не могу запомнить в английском языке, что Odd именно нечетное, а Even – четное, а не наоборот.
Even Integers: . . . , –6, –4, –2, 0, 2, 4, 6, . . . , 2k, . . . , where k is an integer
(Note: zero is an even integer.)
А вот о том, что ноль – четное число, никогда в голове не держал и очень удивился этому. А может в наших учебниках ноль не относили ни к четным ни к нечетным? Такое может быть?
Кажется, что я никогда рамьше не задумувался: 0 – четный или нечетный.
Prime Numbers: 2, 3, 5, 7, 11, 13, 17, 19, . . .
(Note: 1 is not a prime and 2 is the only even prime.)
Тут я тоже удивился дескриминации числа 1. Оказывается 1 – не простое число. Тогда вопрос про ноль.
Ноль – простое или непростое число (но четное)?
Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
(Note: the units digit and the ones digit refer to the same digit in a number. For example, in the number 125, the 5 is called the units digit or the ones digit.)
Здесь полезно было-бы добавить, что количество цифр зависит от системы счисления, например, в шестнадцетиричной системе мы имеем еще дополнительно 6 цифр.
Здесь я не понял смысла терминов units digit и ones digit. Было у нас что-то такое…?
Источник: tutorstate.wordpress.com
Чётные и нечётные числа
Чётным называется число, которое делится без остатка на 2. Например, число 20 является четным, потому что оно делится без остатка на 2:
Нечётным называется число, если при его делении на 2, остаётся остаток 1. Например число 21 является нечетным, потому что после его деления на 2 остается остаток 1:
21: 2 = 10 (1 в остатке)
Как распознать чётное число от нечетного, не делая деления на 2? Очень просто. Из однозначных чисел чётными являются числа 0, 2, 4, 8, а нечетными являются 1, 3, 5, 7, 9. Если число оканчивается чётной цифрой, то это число является чётным. Если число оканчивается нечетной цифрой, то это число является нечетным.
Является ли 0 чётным числом? — Numberphile
Например, число 308 чётно, потому что оно оканчивается чётной цифрой. Число 1024 тоже четно, потому что оканчивается четной цифрой. Числа 305 и 1027 являются нечётными, потому что они оканчиваются нечётными цифрами.
Конечно, чётность и нечётность чисел можно проверить, сделав деления на 2, но в данном случае, когда это можно сделать «на глаз», считаем деление лишней операцией.
Простые и составные числа
Простым называется число, которое делится на единицу и на само себя. Другими словами, имеет только два делителя. Например, число 5 делится на единицу и на само себя:
Значит, 5 является простым числом.
Составным же называется число, которое имеет два и более делителя. Например, число 4 составное, потому что у него два и более делителя: 4, 2 и 1:
Значит, 4 является составным число.
Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:
Самое популярное на сайте:
Частичная и полная санитарная обработка людей. Порядок проведения полной санитарной обработки на санитарно обмывочных пунктах Защита продуктов питания и воды от заражения радиоактивными, отравляющими веществами и бактериальными средствами.
Предметно-количественный учет спирта этилового в медицинской организации Тема: Оборот лекарственных средств Источник: Электронная система «Контроль в ЛПУ» Этиловый спирт не относится к НС и ПВ и включен в.
Революция 1905 – 1907 гг. в России: причины, события, результаты, последствия Первая русская революция 1905 – 1907 произошла в результате общенационального кризиса, который приобрел масштабный характер.
Эффективность производства и ее показатели. Пути и факторы повышения эффективности производства В основе экономического прогресса лежит повышение эффективности производства.
Общая характеристика учебной деятельности. Понятие «учебная деятельность» достаточно неоднозначно.
Источник: studopedia.ru
Number Zero Определение и факты
В математике нуль является цифрой-заполнителем в виде цифр и числом, значение которого не равно нулю. Вот коллекция фактов о числе ноль, его история и математические правила.
История
Люди начали использовать ноль (в основном как заполнитель) в Вавилоне, Центральной Америке и Египте где-то во 2-м тысячелетии до нашей эры. К 1770 г. до н.э. египтяне использовали иероглиф для обозначения нуля, обозначая базовую линию для строительства пирамиды. Примерно в то же время вавилоняне начали использовать символ нуля в качестве заполнителя. Между тем глифы из Центральной Америки указывают на то, что у ольмеков был ноль.
Понятие нуля предшествовало его описанию на много веков. Индийский астроном и математик Брахмагупта написал правила математики числа ноль в 7 веке (628 г. н.э.). Итальянский математик Фибоначчи (Леонардо Пизанский) представил индуистско-арабскую математику Европе в 1202 году. До этого обычно использовались римские цифры, в которых не было нуля даже в качестве цифры-заполнителя.
Интересные факты о цифрах ноль
- В качестве заполнителя ноль помогает людям отличить числа, которые в противном случае выглядели бы одинаково. Например, 4 и 40 без нуля выглядят одинаково, даже если имеют разные значения. В числе 603 цифра означает, что 6 соток нет десятков и 3 единицы.
- Цифра ноль означает отсутствие значения. Например, если у вас есть 2 яблока и вы съели 2 яблока, у вас нет яблок.
- Впервые «ноль» в английском языке употребили в 1598 году. Слово «ноль» происходит от итальянского нуль, которое, в свою очередь, восходит к арабскому слову ṣifr, что означает «пустой».
- Ноль — это число с множеством других имен, включая «о», «ноль», «ноль», «ноль», «следует», «что-нибудь», «шифр», «зилч» и «почтовый индекс».
- На нем также есть несколько символов, но в основном он выглядит как сплющенный круг. Древнеегипетский иероглиф нуля или нфр сердце с трахеей, что также означало «красивое или хорошее». Вавилонский ноль представлял собой два наклонных клина. Один китайский ноль (690 г. н.э.) представлял собой простой круг, чем-то напоминающий открытый символ, используемый сегодня. Но современный символ на самом деле происходит от индийского символа, который был большой точкой.
- Нет «нулевого года». Счет в календаре идет с 1 года до н.э. до 1 года нашей эры.
- Число ноль четное.
- Ноль — это целое число.
- Это целое число.
- Это рациональное число. Другими словами, вы можете выразить это как частное двух целых чисел.
- Ноль — это настоящий номер . Вы можете нарисовать его на числовой прямой.
- Ноль не является ни положительным, ни отрицательным. Хотя некоторые виды математики считают ноль одновременно положительным и отрицательный.
Почему ноль — четное число?
Ноль — это четное число или его паритет (четное оно или нечетное) четное. Есть несколько причин называть ноль четным числом. Основная причина в том, что оно удовлетворяет определению четного числа: это целое число, кратное 2, где 0 x 2 = 0.
Есть и другие причины:
- Ноль делится на 2 и каждое кратное 2. Например, 0 ÷ 2 = 0 и 0 ÷ 4 = 0.
- Десятичное целое число имеет ту же четность, что и его последняя цифра. Например, число 10 четное, а его последняя цифра нулевая, поэтому 0 четное.
- Числа в строке целых чисел чередуются между четными и нечетными. Числа по обе стороны от нуля нечетные, поэтому 0 четный.
- Ноль — это отправная точка, с которой рекурсивно определяются натуральные четные числа.
Что такое множественное число от нуля?
Две формы множественного числа слова «ноль» — это «нули» и «нули». В соответствии с Оксфордский словарь, любое слово одинаково хорошо. Однако слово «нули» обычно используется, когда «ноль» является глаголом. Например, вы бы сказали: «Она нацелена на цель». При обсуждении числа «ноль» в математике чаще встречаются «нули» во множественном числе.
Ноль по математике
Число ноль имеет несколько особых математических свойств:
Нулевое добавление — аддитивная идентичность
Если сложить число плюс ноль, получится это число.
- п + 0 = п
- 2 + 0 = 2
- -5.4 + 0 = -5.4
Нулевое вычитание
Вычитание нуля из числа равняется этому числу.
- п — 0 = п
- 3 – 0 = 3
- -1.75 – 0 = -1.75
Вычитание числа из нуля равняется отрицательному значению этого числа.
- 0 — х = -х
- 0 – 2 = -2
- 0 – (-3) = 3
Нулевое умножение
Умножение числа на ноль равно нулю.
- п х 0 знак равно 0 х п = 0
- 5 х 0 = 0
- -42 х 0 = 0
Нулевое деление
Ноль, деленный на любое ненулевое число, равняется нулю.
- 0 ÷ x = 0 (при условии, что x не равен нулю)
- 0 ÷ 8 = 0
- 0 ÷ -12 = 0
Число, деленное на ноль, не определено. Это потому, что 0 не имеет обратного мультипликативного числа. Другими словами, никакое действительное число, умноженное на ноль, не равно 1.
- n / 0 = не определено
- 1/0 = не определено
- -4 / 0 = не определено
Обратите внимание, что в некоторых математических дисциплинах деление 1 или положительного числа на ноль равно бесконечности. Но даже здесь 0/0 не определено.
Ноль и экспоненты
Возведение числа в нулевую степень равно 1. Исключение составляют случаи, когда это число равно нулю (в некоторых случаях).
- Икс 0 = 1 (где x не 0)
- 5 0 = 1
- -2 0 = 1
- 0 0 = 1 (обычно)
- 0 0 = undefined (иногда)
В алгебре и комбинаторике 0 0 = 1. Например, биномиальная теорема имеет значение только для x = 0, когда 0 0 = 1 . В математическом анализе и некоторых языках программирования 0 0 не определено.
Ноль, возведенный в степень числа, равен 0, при условии, что это число не равно нулю и положительно.
- 0 Икс = 0, когда x ≠ 0
- 0 5 = 0
- 0 – Икс = undefined
- 0 -1 = undefined (в основном это то же самое, что 1 ÷ 0)
- 0 -2.5 = undefined
- 0 0 = undefined или 1, в зависимости от дисциплины
Дополнительные математические правила для нуля
- 0! = 1 (нулевой факториал равен единице)
- √0 = 0
- бревноб(0) не определено
- грех 0º = 0
- cos 0º = 1
- загар 0º = 0
- Сумма 0 чисел (пустая сумма) равна нулю.
- Произведение 0 чисел (пустая сумма) равно 1.
- Производная 0 ′ = 0.
- Интеграл ∫ 0 dИкс = 0 + C
использованная литература
- Андерсон, Ян (2001). Первый курс дискретной математики. Лондон: Спрингер. ISBN 978-1-85233-236-5.
- Бурбаки, Николас (1998). Элементы истории математики. Берлин, Гейдельберг и Нью-Йорк: Springer-Verlag. ISBN 3-540-64767-8.
- Ифра, Жорж (2000). Всеобщая история чисел: от предыстории до изобретения компьютера. Вайли. ISBN 978-0-471-39340-5.
- Матсон, Джон (2009). “ Происхождение нуля “. Scientific American. Springer Nature.
- Соунс, Кэтрин; Уэйт, Морис; Хоукер, Сара, ред. (2001). Оксфордский словарь, тезаурус и руководство Wordpower (2-е изд.). Нью-Йорк: Издательство Оксфордского университета. ISBN 978-0-19-860373-3.
- Вайль, Андре (2012). Теория чисел для начинающих. Springer Science https://radyomx.com/ru/topics/9324-number-zero-definition-and-facts» target=»_blank»]radyomx.com[/mask_link]