Однако, 1 Па – очень малая величина давления, поэтому при измерении атмосферного давления пользуются кратными единицами: кПа = 1000 Па и МПа = 10 6 Па = 1000 кПа.
Кроме Паскаля для измерения атмосферного давления также используются внесистемные единицы – миллиметры ртутного (водяного) столба и бары, причем
1 бар = 101,3 кПа = 760 мм. рт. ст.,
именно такое значение имеет атмосферное давление на уровне моря.
Прибор для измерения атмосферного давления называется барометром. Наиболее распространенным типом является металлический барометр-анероид, конструкция которого показана на рис. 1.2. Основу анероида составляет цилиндрическая камера К, из которой откачан воздух. Камера герметично закрыта тонкой гофрированной (волнистой) мембраной М.
Чтобы атмосферное давление не сплющило мембрану, она с помощью тяги Т соединена с пружиной П, закрепленной на корпусе прибора. К пружине шарнирно прикреплен нижний конец стрелки С, которая может вращаться вокруг оси О. Для измерения показаний прибора служит шкала Ш. При изменении атмосферного давления мембрана прогибается внутрь или наружу и перемещает стрелку по шкале, показывая значение давления (шкалу барометра-анероида градуируют и поверяют по показаниям ртутного барометра).
Атмосферное давление
Рис. 1.2 – Принципиальная схема барометра-анероида
Анероиды очень удобны в работе, прочны, малогабаритны, но менее точные, чем ртутные барометры. Внешний вид барометра-анероида показан на рис. 1.3.
Рис. 1.3 – Барометр-анероид
Согласно барометрической формуле
то есть значение атмосферного давления зависит от высоты над поверхностью Земли, потому шкалу барометра-анероида можно проградуировать в метрах согласно распределения давления по высоте. Анероид, имеющий шкалу, по которой можно определить высоту подъёма над Землей, называют альтиметром (высотомером). Их широко используют в авиации, парашютном спорте, альпинизме.
Дата добавления: 2017-01-26 ; просмотров: 4846 ;
Источник: poznayka.org
БАРОМЕТР
БАРОМЕТР (греческий baros тяжесть + metreo измерять) — прибор для измерения атмосферного давления. В метеорологии применяются четыре типа барометров: 1) жидкостные; 2) металлические — анероидные; 3) газовые; 4) термобарометры, или гипсотермометры (от греческого hypsos — высота). В гигиенических исследованиях наибольшее распространение получили барометры первых двух типов.
Газовый барометр, в котором барометрическое давление определяется по изменению объема постоянного количества газа, находящегося в приборе, в силу сложности работы с ним не получил распространения в гигиенической практике. То же следует сказать о термобарометрах, или гипсотермометрах,— весьма точных приборах, в которых используется зависимость между точкой кипения воды и барометрическим давлением. Эти приборы применяются или для точных измерений (главным образом в горных экспедициях), или для проверки показаний анероидов.
Атмосферное давление
Рис. 1. Системы ртутных барометров: 1 — чашечный; 2 — сифонный; 3 — сифонно-чашечный; H — высота ртутного столба (величина атмосферного давления).
Принцип работы жидкостного барометра основан на том, что атмосферное давление уравновешивает определенный столб жидкости в запаянной с одного конца трубке. Чем меньше удельный вес жидкости, тем выше столб последней, уравновешиваемый давлением атмосферы. В метеорологической и гигиенической практике наибольшее распространение получили ртутные барометры. Для специальных исследований, где требуется высокая точность и чувствительность прибора, а также для измерения малых давлений, например, при полетах на больших высотах, могут применяться барометры с жидкостями значительно менее плотными, чем ртуть (вода, масло, глицерин).
Существует три системы ртутных барометров: чашечные, сифонные и сифонно-чашечные. Схема устройства ртутных барометров указанных трех систем представлена на рисунке 1. В метеорологических и гигиенических исследованиях обычно применяют чашечные и сифонно-чашечные барометры.
Рис. 2. Центральная часть барометрической трубки морского чашечного барометра: нижняя трубка помещается в чашку с ртутью, в верхний расширенный ее конец вставляется запаянная сверху барометрическая трубка с воронкой (1). Рис. 3. Сифонно-чашечный контрольный барометр: 1 — запаянное колено трубки; 2 — открытое колено трубки; 3 — колпачок ниппеля; 4 — железный конус; 5 — защитный цилиндр; 6 — винт; 7 — мешок из лайки; 8 — чашка; 9 — латунная оправа.
В станционных чашечных барометрах с компенсированной шкалой атмосферное давление определяют по положению ртути в стеклянной трубке по шкале, имеющейся на металлической оправе барометра. Изготовляются чашечные барометры со шкалами от 810 до 1110 мб и от 680 до 1110 мб. В чашечных экспедиционных барометрах перед наблюдением предварительно с помощью специального винта (внизу прибора) устанавливают уровень ртути в чашечке на нулевой точке. Своеобразное устройство барометрической трубки морского чашечного барометра (рис. 2) предотвращает колебания ртути в барометре при качке и исключает возможность попадания воздуха в торичеллиеву пустоту.
В сифонно-чашечных барометрах величина атмосферного давления измеряется по разнице высот ртутного столба в длинном (запаянном) и коротком (открытом) колене трубки. Устройство сифонно-чашечного контрольного барометра показано на рисунке 3. Барометр позволяет производить отсчеты с точностью до 0,05 мм рт. ст. При помощи винта, на который опирается кожаное дно чашечки барометра, уровень ртути в коротком (открытом) колене приводят к нулевой точке, а затем отсчитывают показания барометра как обычно.
Сифонно-чашечный инспекторский барометр имеет две шкалы: слева в миллибарах и справа в миллиметрах рт. ст. Для определения десятых долей миллиметра ртутного столба служит нониус. Найденные числовые выражения атмосферного давления необходимо с помощью вычислений или по специальной таблице привести к нулю градусов.
На метеорологических станциях в показания барометра вводят температурную и так называемую постоянную поправку: инструментальную и поправку на силу тяжести.
Устанавливать барометр следует в отдалении от источников теплового излучения (солнце, нагревательные приборы), от двери и окон.
Рис. 4. Барометр-анероид: 1 — шкала; 2 — пружина; 3 — анероидная коробка (металлическая подушка с гофрированными стенками); 4 — спиральная пружина; 5 — коленчатый рычаг; 6 — стержень; 7 — шарнирная цепочка; 8 — ось стрелки; 9 — стрелка.
Металлический барометр-анероид особенно удобен для проведения наблюдения в экспедиционных условиях, но он должен быть выверен по более точному ртутному барометру. Принцип устройства барометра-анероида очень прост.
Изогнутая в виде подковы металлическая трубка Бурдона или металлическая подушечка с гофрированными стенками, из которых удален воздух, изменяют объем (деформируются) под воздействием давления. Деформация передается при помощи рычажков стрелке, которая и указывает на циферблате атмосферное давление (рис. 4). На циферблате анероида вмонтирован изогнутой формы термометр.
Для измерения давления на высоте применяется анероид-высотомер, он имеет две шкалы; на одной из них нанесены величины давления в миллиметрах рт. ст., а на другой — высота в метрах. На самолетах применяют альтиметры с циферблатами, на которых указывается высота полета.
Рис. 5. Барограф: 1 — столбик анероидных коробок; 2, 3, 4, 5 — система рычагов; 6 — рамка алюминиевого рычага; 7— алюминиевый рычаг с писчиком.
На метеорологических станциях принято выражать атмосферное давление в международных единицах — миллибарах. 1 мб равен 0,75006 мм рт. ст. и в свою очередь 1 мм рт. ст. равен 1,3332 мб. Для перевода миллиметров рт. ст. в миллибары имеются таблицы (см. Атмосфера).
Барограф-барометр-самописец, предназначенный для непрерывной регистрации атмосферного давления. В гигиенической практике применяются только металлические (анероидные) барографы (рис. 5). Под влиянием изменений атмосферного давления (см.
Атмосфера) пакет соединенных вместе анероидных коробок в результате деформации оказывает влияние на систему рычажков, а через них на специальное перо. При увеличении атмосферного давления анероидные коробки сжимаются и рычажок с пером поднимается кверху; при уменьшении давления анероидные коробки с помощью помещенных внутри них пружин расширяются и перо чертит линию книзу. Запись давления в виде непрерывной линии вычерчивается пером на градуированной в миллиметрах рт. ст. или в миллибарах бумажной ленте, надетой на барабан. Запас таких лент и флакон невысыхающих чернил придается к каждому барографу вместе с инструкцией и поверочным свидетельством.
Вращение барабана с лентой происходит при помощи часового механизма, который заводится специальным ключом. Существуют барографы с суточным и недельным заводом. Для устранения температурных влияний на показания барографов в них вставляют биметаллические компенсаторы.
Библиогр.: Александров В. М. Методы санитарно-гигиенических исследований, с. 172, М., 1955; Бурштейн А. И. Методы санитарно-гигиенических исследований, с. 140, Киев, 1950; Кед-роливанский В. Н. и Стерн-· з а т М. С. Метеорологические приборы, с. 252, Д., 1953; М и н х А. А. Методы гигиенических исследований, М., 1971.
В. А. Спасский.
Источник: xn--90aw5c.xn--c1avg
Что такое атмосферное давление и чем его измеряют?
Атмосферное давление – это то давление, которое оказывает воздух атмосферы на любой предмет, находящийся в ней. Как и любое другое давление, оно измеряется в паскалях (используется сокращение Па).
Численно давление атмосферы равно отношению веса столба воздуха, находящегося на некоторой поверхностью, к площади этой поверхности. Считается что давление атмосферы у поверхности планеты примерно равно 101 325 Па, хотя эта величина и зависит от ряда факторов. Используется специальная внесистемная единица измерения давления, называемая атмосферой (1 атм):
1 атм = 101 325 Па
Исторически первые опыты по определению давления проводились в XVII в., причем давление атмосферы измерялось через высоту подъема столбика ртути, вызванного давлением. Тот же принцип долгое время использовался во многих барометрах – приборах для измерения давления. Отсюда возникла ещё одна величина для измерения давление – миллиметры ртутного столба. Справедлива следующая пропорция:
760 мм рт. ст = 1 атм = 101 325 Па
Стоит отметить, что на высоте давление падает. Это связано с тем, что уменьшается высота столба воздуха, находящегося над поверхностью, а значит и его масса. Более того, так как давление на высоте меньше, то и воздух находится в более разряженном, то есть менее плотном состоянии. Это приводит к тому, что давление не просто падает с высотой, а падает очень быстро. В свою очередь это влияет на человеческий организм.
Уже на высоте 2 км у неподготовленных людей начинается высотная болезнь. Дело в том, что из-за снижения давления человек с каждым вдохом вдыхает меньше кислорода, чем у поверхности, и у него может начаться кислородное голодание. До определенной степени можно натренировать организм и справляться с нехваткой кислорода, профессиональные спортсмены даже специально тренируются в горах, чтобы развивать выносливость при стайерском беге. Самые высокогорные постоянные поселения людей располагаются на высоте около 5100 метров, где давление вдвое меньше, чем на нулевой высоте.
Однако ещё выше дышать невероятно тяжело. На вершине Эвереста (высота 8848 м) давление в 4 раза ниже, чем на уровне моря. Даже несколько часов, проведенные так высоко без кислородных масок, могут привести неподготовленного человека к смерти, хотя отдельным альпинистам удавалось покорять Эверест и без использования кислородного оборудования.
На высоте около 20 км давление падает до 47 мм рт. ст. При таком давлении вода закипает не при 100°С, а уже при 36,6°С, то есть прямо в человеческом организме. Поэтому все пилоты, летающие на таких высотах (да и ниже тоже), используют специальные герметические костюмы. Если человек окажется на такой высоте без защитного оборудования, то он почти мгновенно погибнет.
Список использованных источников
• https://ru.wikipedia.org/wiki/Атмосферное_давление • https://nauka.club/geografiya/atmosfernoe-davlenie-v-chem-izmeryaetsya-i-ot-chego-zavisit.html
Источник: natworld.info