Цилиндр, конус и шар относятся к объемным (трехмерным) геометрическим фигурам вращения.
Объемные фигуры вращения (еще говорят — «тела», подразумевая объемность фигуры), как правило, образованы вращением плоской фигуры вокруг какой-то линии (прямой).
Так, цилиндр — это фигура, полученная от вращения прямоугольника вокруг одной из его сторон как оси; конус — вращением прямоугольного треугольника вокруг его катета как оси, шар — вращением полукруга вокруг его диаметра как оси.
Объемные фигуры бывают прямые (прямой цилиндр, прямой конус) и наклонные (наклонный цилиндр, наклонный конус), что зависит от вида той плоской геометрической фигуры, которая их образует.
В курсе математики для б класса рассматриваются только прямые цилиндры и конусы
Определение. — это тело (объемная геометрическая фигура), полученное вращением прямоугольника вокруг одной из его сторон как оси.
Определение. (прямой) — это тело (объемная геометрическая фигура), полученное вращением прямоугольного треугольника вокруг его катета как оси.
Математика | Объём в жизни и в математике
Определение. — это тело (объемная геометрическая фигура), полученное вращением полукруга вокруг его диаметра как оси.
Развертки цилиндра и конуса
называется изображение плоскости, ограничивающей фигуру, в одной плоскости листа по размерам фигуры.
Развертка цилиндра приведена схематически.
Развертка конуса приведена схематически.
Площади боковой поверхности цилиндра и конуса
Правило. равна произведению длины окружности основания и высоты цилиндра.
где C — длина окружности, H — высота цилиндра, R — радиус окружности основания.
Правило. равна произведению половины длины окружности основания и образующей конуса.
где C — длина окружности основания, l — длина образующей конуса, R — радиус основания.
Площадь поверхности шара
Правило. равна учетверенной площади большого круга шара.
где R — радиус шара.
Объемы цилиндра, конуса и шара
Правило. равен произведению площади основания н высоты.
где R — радиус основания, H — высота цилиндра.
Правило. равен одной трети произведения площади основания и высоты конуса.
где R — радиус основания, H — высота конуса.
Правило. равен четырем третям
произведения числа Пи на куб радиуса.
где R — радиус шара.
Запись опубликована в рубрике Математика с метками конус, объем, площадь, развертка, цилиндр, шар. Добавьте в закладки постоянную ссылку.
Источник: shkolo.ru
В каком классе проходят объем фигур
Оцени ответ
- Алгебра
- Математика
- Русский язык
- Українська мова
- Информатика
- Геометрия
- Химия
- Физика
- Экономика
- Право
- Английский язык
- География
- Биология
- Другие предметы
- Обществознание
- История
- Литература
- Українська література
- Беларуская мова
- Қазақ тiлi
Показать ещё
КАК ЗАПОМНИТЬ ОБЪЕМЫ ВСЕХ ФИГУР? #shorts #математика #егэ #огэ #профильныйегэ
Источник: www.shkolniku.com
Решение задач на нахождение периметра, площади, объёма фигур
В отличие от периметра, не существует универсальной формулы площади. Для каждого типа фигур площадь вычисляется по своей особой формуле. Мы будем рассматривать только прямоугольники, квадраты и составные фигуры из прямоугольников и квадратов.
Чаще всего площадь обозначается буквой S.
Площадь прямоугольника – произведение длины на высоту.
Хотите, чтобы ваш ребёнок обучался самостоятельно?
Вам поможет наш ВИДЕОКУРС
Разделим этот прямоугольник на квадраты