V wr что за формула

формулки.ру

Существует формула, с помощью которой можно посчитать путь, пройденный телом, когда нам известны его начальная скорость, ускорение и конечная скорость.

Сокращенно эту формулу называют «путь без времени». Так ее называют потому, что в правой ее части время t движения отсутствует (рис. 1).

Рис.1. Так выглядит формула, по которой можно вычислить путь тела, не зная, сколько времени занимало движение

Формула пути без времени помогает упростить решение некоторых задач кинематики. Особенно, задач, части C.

Однако, не торопитесь на ЕГЭ записывать эту формулу в готовом виде. Сначала в решении задачи нужно записать вывод этой формулы. И только потом ее можно использовать.

Формулу выводят из выражений для равнопеременного движения. Сейчас я помогу вам вывести эту формулу с помощью нескольких простых шагов.

Выводим формулу пути без времени

Для определенности будем считать, что тело движется по прямой все быстрее и быстрее. То есть, скорость тела увеличивается, так как появляется ускорение.

Как легко запомнить формулы #огэфизика #физика #огэ2023

В таком случае векторы ускорения и скорости тела будут сонаправленными (параллельными и направленными в одну и ту же сторону).

Сонаправленные или противоположно направленные векторы называют коллинеарными векторами. Прочитайте подробнее о коллинеарных векторах.

Чтобы вычислить путь тела, когда скорость его увеличивается, нужно использовать две формулы:

( large v_ left( frac> right)) – начальная скорость тела;

( large v left( frac> right)) – конечная скорость;

( large a left( frac>> right)) – ускорение тела;

( large S left( text right)) – путь, пройденный телом;

(large t left( c right)) – время, за которое тело прошло этот путь.

В формуле для пути S присутствует время t. Получим из нее формулу для пути, в которой время будет отсутствовать.

  • сначала получить выражение для времени t из уравнения для скорости;
  • затем в формулу пути подставить полученное выражение вместо времени t.

Выражаем время из формулы для скорости

Выпишем формулу, связывающую начальную и конечную скорость тела:

[ large v = v_ + a cdot t ]

Избавимся в правой части от начальной скорости, обозначенной символом ( v_). Для этого из обеих частей уравнения вычтем число ( v_). Получим такую запись:

[ large v — v_ = a cdot t ]

Теперь, чтобы справа в формуле оставалось только время «t», избавимся от ускорения «a». Для этого разделим обе части уравнения на «a»:

Это выражение нам пригодится для дальнейшего вывода формулы «путь без времени».

В формулу пути подставим выражение для времени

Запишем теперь формулу для пути S и полученную формулу для времени t, объединив их в систему:

В первом уравнении системы будем заменять символ t дробью из второго уравнения. Тогда система из двух уравнений превратится в единственное уравнение. И в этом уравнении не будет символа t времени:

Осталось теперь упростить полученное выражение. Будем производить упрощение по частям.

Упрощаем выражение, расположенное до знака «плюс» в правой части

Выпишем отдельно все, что располагается до знака «плюс» в правой части уравнения:

Умножим числитель дроби на число (v_).

  • сначала числитель обособим скобками;
  • затем запишем число (v_) перед скобками;
  • а потом внесем это число внутрь скобок.

В числитель дроби, обособленный с помощью скобок помещаем число (v_):

Теперь необходимо умножить скобку на число (v_). На рисунке 2 указано, как правильно выражение в скобках умножить на число, стоящее за скобками.

Рис. 2. Чтобы умножить скобку на число, нужно умножить каждое слагаемое в скобке на это число

Нужно к каждой скорости в скобках дописать число (v_), умножая его на эти скорости. Получим такое выражение:

Читайте также:  Какой эрудит лучше магнитный или обычный

То есть, вместо первоначальной записи, мы получили такую запись:

Возводим в квадрат дробь

После знака «плюс» в правой части уравнения располагается дробь, которую нужно возвести в квадрат. Обратим внимание на эту дробь:

Правильно возвести дробь в степень поможет рисунок 3.

Рис. 3. Дробь возводим в степень, отдельно возводя в эту степень ее числитель и знаменатель

В результате возведения в квадрат дробь приобретет такой вид:

В числителе этой дроби находится выражение в скобках, которое нужно возвести в квадрат. И нам придется применить одну из формул сокращенного умножения. Запоминать формулы сокращенного умножения удобно в виде, приведенном на рисунке 4.

Рис. 4. Удобный для запоминания вид формул сокращенного умножения

Используем для этого формулу сокращенного умножения, которая содержит знак «минус». Она называется «Квадрат разности». Тогда числитель дроби превратится в такую запись:

Теперь можем записать полученную дробь:

Упрощаем правую часть, записанную после знака «плюс»

Обратим внимание на все, что располагается в правой части уравнения после знака «плюс»:

Центростремительная сила

Центростремительная сила определяется как сила, действующая на тело, движущееся по круговой траектории, направленной к центру, вокруг которого движется тело. Термин происходит от латинских слов centrum для «центра» и petere , что означает «искать».

Центростремительную силу можно считать ищущей центр силой. Его направление ортогонально (под прямым углом) движению тела в направлении к центру кривизны пути тела. Центростремительная сила изменяет направление движения объекта, не изменяя его скорости.

Основные выводы:

  • Центростремительная сила — это сила, действующая на тело, движущееся по окружности, направленной внутрь к точке, вокруг которой движется объект.
  • Сила, действующая в противоположном направлении, направленная наружу от центра вращения, называется центробежной силой.
  • Для вращающегося тела центростремительная и центробежная силы равны по величине, но противоположны по направлению.

Как рассчитать центростремительную силу

Математическое представление центростремительной силы было получено голландским физиком Христианом Гюйгенсом в 1659 году. Для тела, движущегося по круговой траектории с постоянной скоростью, радиус окружности (r) равен массе тела (m), умноженной на квадрат скорости. (v) деленная на центростремительную силу (F):

Уравнение можно изменить для решения центростремительной силы:

Важный момент, который вы должны отметить из уравнения, заключается в том, что центростремительная сила пропорциональна квадрату скорости. Это означает, что для удвоения скорости объекта требуется в четыре раза больше центростремительной силы, чтобы объект двигался по кругу. Практический пример этого можно увидеть, когда автомобиль делает крутой поворот. Здесь трение является единственной силой, удерживающей шины автомобиля на дороге. Увеличение скорости значительно увеличивает силу, поэтому занос становится более вероятным.

Также обратите внимание, что расчет центростремительной силы предполагает, что на объект не действуют никакие дополнительные силы.

Формула центростремительного ускорения

Другим распространенным расчетом является центростремительное ускорение, которое представляет собой изменение скорости, деленное на изменение во времени. Ускорение – это квадрат скорости, деленный на радиус окружности:

Практическое применение центростремительной силы

Классическим примером центростремительной силы является случай, когда объект качается на веревке. Здесь натяжение веревки создает центростремительную силу «тяги».

Центростремительная сила — это сила «толкания» в случае мотоциклиста Стены Смерти.

Центростремительная сила используется для лабораторных центрифуг. Здесь взвешенные в жидкости частицы отделяются от жидкости с помощью ускорительных трубок, ориентированных таким образом, что более тяжелые частицы (т. е. объекты большей массы) притягиваются ко дну трубок. Хотя центрифуги обычно отделяют твердые вещества от жидкостей, они также могут фракционировать жидкости, например, в образцах крови, или отделять компоненты газов.

Газовые центрифуги используются для отделения более тяжелого изотопа урана-238 от более легкого изотопа урана-235. Более тяжелый изотоп вытягивается наружу вращающегося цилиндра. Тяжелая фракция отсеивается и направляется в другую центрифугу. Процесс повторяется до тех пор, пока газ не будет достаточно «обогащен».

Телескоп с жидким зеркалом (LMT) может быть изготовлен путем вращения отражающего жидкого металла, такого как ртуть. Поверхность зеркала принимает форму параболоида, поскольку центростремительная сила зависит от квадрата скорости. Из-за этого высота вращающегося жидкого металла пропорциональна квадрату его расстояния от центра. Интересную форму, которую принимают вращающиеся жидкости, можно наблюдать, вращая ведро с водой с постоянной скоростью.

Читайте также:  Почему не получается пастила из яблок

Источник: scibio.ru

Формула времени в физике — примеры вычислений при равноускоренном и равномерном движении

Классическая механика, физика и теория относительности применяют разные концепции времени. Понятие характеризует последовательность событий в пространстве. Мера, изменяющая мир, переименована учеными в четвертую координату. В физических формулах время обозначается буквой t и зависит от разных факторов.

Формула времени

Общая характеристика

Скорость, время и расстояние являются физическими показателями, взаимосвязанными между собой процессом движения. На практике и теории известно равномерное и равноускоренное движение тел. Первый случай описывает постоянство времени, а второй — его изменение.

Основные понятия

Течение времени является естественным процессом

Однозначное и конкретное определение тяжело сформулировать, но существуют разные концепции современной философской мысли в математике и физике. Течение времени является естественным процессом. Оно уходит, меняется все вокруг, совершаются разные события в мире, поэтому для физической меры характерен контекст событий.

Чтобы измерить время, нужно знать общие повторяющиеся события с одинаковым периодом. Это может быть смена дня, ночи или времени года. Чтобы определить единицу измерения времени (метр, час, секунда), ученые обращались к древнейшим источникам познаний. Год состоит из двенадцати месяцев или четырех сезонов. Такое количество раз в весенний, летний, зимний и осенний периоды главный спутник Земли меняет свои фазы.

По мере развития прогресса измерение t модифицировалось, появлялись новые солнечные, водные, песчаные, огненные, механические, электронные и молекулярные измерители времени — часы.

Время включено в семь основных физических величин международной системы единиц СИ. Этот показатель используют для остальных составляющих. Четкое понимание t помогает проведению экспериментов и в обычной жизни. Основной целью навигации и астрономии было измерение t. С 1000 по 1960 год секундное измерение воспринималось как 1/86400 дней. С 1970 г. это понятие видоизменилось, поскольку стала учитываться периодичность земной орбиты.

Швейцарские часы FOCS

Самые точные мерила —швейцарские часы FOCS, измеряющие t с погрешностью хода в одну секунду за 30 млн лет. Физическая величина отражает свойство материальных процессов, имеет определенную продолжительность, следует друг за другом. Взаимосвязан этот показатель с материей, движением, так как является формой его существования.

Длительность физического процесса, происходящего в определенной точке, устанавливают с помощью часов, расположенных в ней. Здесь используется прямое сравнение, уравнивается длительность процессов. Измерение продолжительности сводится к фиксированию начала и окончанию процесса на шкале.

Когда говорят о фиксации показаний часов во время начала и завершения процесса, это не относится к фактическому месту их нахождения. Теория относительности Эйнштейна меняет понимание времени, утверждая, что прогресс его не универсален и зависит от того, кто его изменяет. В такой картине реальности часы тикают с разной скоростью в зависимости от того, кто их носит.

Принимая большое ускорение или располагаясь рядом с сильными силами гравитации (вблизи черной дыры), можно изменить скорость течения времени, остановить его или возвратить. Для человека, находящегося внутри черной дыры, пространство и время кажутся взаимозаменяемыми, поэтому спуск в нее неизбежен, как и течение t вне этой области. Относительность уравнивает время и пространство.

Древняя система исчисления

Древняя система исчисления

До существования нашей эры люди привязывали отсчет времени к движению небесных тел или событий, связанных с ними. Древние народы искали основу для построения своей системы исчисления. В Вавилоне это было число 60, благодаря ему окружность содержит 360°, градус равен 60 минутам, а каждая из них состоит из 60 секунд. Год представлялся окружностью в 360 градусов.

Когда-то минимальной мерой исчисления был час. Жители Древнего Вавилона оказались сильны в математике, поэтому производили важные расчеты и решали задачи. Вводилась наименьшая единица времени. 60 минут составляют час, а в минуте столько же секунд. Объяснение того, что сутки составляют 24 часа, а день делится пополам и равен 12 часам, выявили египтяне.

Самой большой единицей измерения является индуистское и буддистское понятие Кальпа. Величина равна 4,32 млрд лет, что совпадает с возрастом планеты. Если перевести век Брахмы в обычные годы, получится 311 трлн и 40 млрд лет. Первыми старинными часами являются солнечные мерила. Действие их основывается на изменении длины теней предметов по мере движения Солнца по небу.

Читайте также:  Как подстричь бороду самому

Такие часы внешне представляли собой длинный шест, воткнутый в землю. Затем возникли водяные, песчаные и огненные часы. Работа таких механизмов не привязывалась к движению Солнца, Луны либо звезд. Первые механические мерила начали производиться мастерами Китая в 725 г. Жители Европы в Средние века устанавливали на башнях соборов часы, которые имели только одну часовую стрелку. Карманные измерители возникли в середине XVII века, а наручные намного позже.

В соответствии с международной системой измерения определение одной секунды привязано к периоду электромагнитного излучения, начинающемуся при переходе между тонкими уровнями основного состояния атома цезия-133. Одна секунда составляет 919 263 770 периодов.

Показатели физики

Не существует определенной концепции или класса времени. Показатель непрерывности процессов можно вычислить по формуле, проанализировать на графике или диаграмме.

Определения и концепции расчета

Термодинамика гласит, что время не вернуть. Его ход зависит от движения системы отсчета и может быть мгновенным.

«релятивистское замедление времени»

  • время;
  • скорость;
  • расстояние.

Секунда — стандартная единица, характеризующая время. Его определение в физике представляется как продолжительный показатель. Время через расстояние и скорость вычисляется по формуле t=S/V. Стандартная расшифровка:

  • S — расстояние;
  • V — конечная скорость (километровое значение);
  • t — время.

Когда скорость измеряется в км/ч, то и время выражается в часах. В любой системе события развиваются одновременно.

Вычисление времени

Формула времени при равноускоренном движении выглядит как t = (V — V0)/a или t = S/(V — V0), где V0 — начальная скорость, a — ускорение. Таблица показателей:

Вид движения Скорость (V) Перемещение (S) Время (t)
Равномерное V = знак постоянства (const) S = Vt t = S/V
Равноускоренное V = V0+at S = V0t+at2/2 t = V-V0/a

Атом изотопа цезия за секунду совершает 9192631770 собственных квантовых переходов. В зависимости от его расположения секунда имеет разные значения.

Решение задач

Понять действие формул времени при равномерном движении или равноускоренном можно, решив задачу. Многие сайты предлагают онлайн-калькулятор для удобного подсчета. В соответствующие графы достаточно ввести основные данные, после чего программа рассчитает все самостоятельно.

Задача 1. Автомобиль ехал со скоростью 200 км/ч и проехал всего 80 км. Требуется определить время движения машины. Условные обозначения:

  • V — скорость;
  • S — расстояние;
  • t — время.

Показатели нужно перевести из километров в метры, из часов в секунды: 1 км = 1 тыс. м, 1 час = 3600 секунд. Получаем S = 80000 м, V= 200000/3600 = 55,55 м/с. Находим скорость по формуле: V= S/t = 80000/55,55 = 1440,14 сек.

Решение задач

14/3600 = 0,4 часа.

Ответ: автомобиль пройдет 0,4 ч.

При неравномерном движении путь, пройденный телом, равен произведению средней скорости на время, в течение которого тело перемещалось.

Задача 2. Движение точки задано уравнением: х = 2t — 0,03t2. Нужно определить, в какой период скорость точки сближения сравняется с нулевой отметкой. Коэффициенты равны 2м/с, 0,03 м/с2.

Условия задачи содержат функцию x (t). Скорость можно вычислить по формуле V = dx/dt = 2 — 0,06t Приравниваем скорость к 0, находим t:

t = 2/0,06 = 33,33 сек.

Необходимо определить зависимость модуля ускорения от времени: A (t)= dv/dt = -0,06.

Задача 3. Самолет для взлета набирает 350 км/ч. Нужно определить время разгона, если скорость достигается в конце взлетной полосы длиной в 2 км. Движение считается равноускоренным.

При равноускоренном движении формула выглядит как S = V0t+at2/2. При этом V= V0+at. Разгон самолета начинается с состояния покоя, то есть V0 = 0.

V=350 км/ч = 97,2 м/с.

t= 2S/V = 2*2000/97,2 = 41,15.

Благодаря вычислению известно, что разгон самолета длится 41,15 сек.

Задача 4. Скорость конькобежца составляет 15 м/с. Нужно вычислить время, за которое он пробежит путь 3 км.

Как решить задачу

t = S/V = 3000/15 = 200

Ответ: за 200 секунд конькобежец пробежит 3 км.

Современная наука распределяет известные представления о времени в разные концепции — относительную и вещественную. По мнению относительной, в природе не существует временных рамок, а понятие времени является отношением между событиями. Время — проявление свойств физических тел и изменений, оно статично, как и пространство.

Понравилась статья? Поделитесь ей

Источник: nauka.club

Рейтинг
( Пока оценок нет )
Загрузка ...
Lady Today